1,823 research outputs found

    PLoS One

    Get PDF

    Ultracold atom-molecule collisions with fermionic atoms

    Full text link
    Elastic and inelastic properties of weakly bound s- and p-wave molecules of fermionic atoms that collide with a third atom are investigated. Analysis of calculated collisional properties of s-wave dimers of fermions in different spin states permit us to compare and highlight the physical mechanisms that determine the stability of s-wave and p-wave molecules. In contrast to s-wave molecules, the collisional properties of p-wave molecules are found to be largely insensitive to variations of the p-wave scattering length and that these collisions will usually result in short molecular lifetimes. We also discuss the importance of this result for both theories and experiments involving degenerate Fermi gases.Comment: 6 pages, 2 figure

    Mechanism of Reconnection on Kinetic Scales Based on Magnetospheric Multiscale Mission Observations

    Get PDF
    We examine the role that ions and electrons play in reconnection using observations from the Magnetospheric Multiscale (MMS) mission on kinetic ion and electron scales, which are much shorter than magnetohydrodynamic scales. This study reports observations with unprecedented high resolution that MMS provides for magnetic eld (7.8 ms) and plasma (30 ms for electrons and 150 ms for ions). We analyze and compare approaches to the magnetopause in 2016 November, to the electron diffusion region in the magnetotail in 2017 July followed by a current sheet crossing in 2018 July. Besides magnetic eld reversals, changes in the direction of the ow velocity, and ion and electron heating, MMS observed large uctuations in the electron ow speeds in the magnetotail. As expected from numerical simulations, we have veried that when the eld lines and plasma become decoupled a large reconnecting electric eld related to the Hall current (110 mV/m) is responsible for fast reconnection in the ion diffusion region. Although inertial accelerating forces remain moderate (12 mV/m), the electric elds resulting from the divergence of the full electron pressure tensor provide the main contribution to the generalized Ohms law at the neutral sheet (as large as 200 mV/m). In our view, this illustrates that when ions decouple electron physics dominates. The results obtained on kinetic scales may be useful for better understanding the physical mechanisms governing reconnection processes in various magnetized laboratory and space plasmas

    Proteome-wide measurement of non-canonical bacterial mistranslation by quantitative mass spectrometry of protein modifications.

    No full text
    The genetic code is virtually universal in biology and was likely established before the advent of cellular life. The extent to which mistranslation occurs is poorly understood and presents a fundamental question in basic research and production of recombinant proteins. Here we used shotgun proteomics combined with unbiased protein modification analysis to quantitatively analyze in vivo mistranslation in an E. coli strain with a defect in the editing mechanism of leucyl-tRNA synthetase. We detected the misincorporation of a non-proteinogenic amino acid norvaline on 10% of all measured leucine residues under microaerobic conditions and revealed preferential deployment of a tRNA(Leu)(CAG) isoacceptor during norvaline misincorporation. The strain with the norvalylated proteome demonstrated a substantial reduction in cell fitness under both prolonged aerobic and microaerobic cultivation. Unlike norvaline, isoleucine did not substitute for leucine even under harsh error-prone conditions. Our study introduces shotgun proteomics as a powerful tool in quantitative analysis of mistranslation

    The neuropeptide complement of the marine annelid Platynereis dumerilii.

    Get PDF
    This is the final version of the article. Available from BioMed Central via the DOI in this record.BACKGROUND: The marine annelid Platynereis dumerilii is emerging as a powerful lophotrochozoan experimental model for evolutionary developmental biology (evo-devo) and neurobiology. Recent studies revealed the presence of conserved neuropeptidergic signaling in Platynereis, including vasotocin/neurophysin, myoinhibitory peptide and opioid peptidergic systems. Despite these advances, comprehensive peptidome resources have yet to be reported. RESULTS: The present work describes the neuropeptidome of Platynereis. We established a large transcriptome resource, consisting of stage-specific next-generation sequencing datasets and 77,419 expressed sequence tags. Using this information and a combination of bioinformatic searches and mass spectrometry analyses, we increased the known proneuropeptide (pNP) complement of Platynereis to 98. Based on sequence homology to metazoan pNPs, Platynereis pNPs were grouped into ancient eumetazoan, bilaterian, protostome, lophotrochozoan, and annelid families, and pNPs only found in Platynereis. Compared to the planarian Schmidtea mediterranea, the only other lophotrochozoan with a large-scale pNP resource, Platynereis has a remarkably full complement of conserved pNPs, with 53 pNPs belonging to ancient eumetazoan or bilaterian families. Our comprehensive search strategy, combined with analyses of sequence conservation, also allowed us to define several novel lophotrochozoan and annelid pNP families. The stage-specific transcriptome datasets also allowed us to map changes in pNP expression throughout the Platynereis life cycle. CONCLUSION: The large repertoire of conserved pNPs in Platynereis highlights the usefulness of annelids in comparative neuroendocrinology. This work establishes a reference dataset for comparative peptidomics in lophotrochozoans and provides the basis for future studies of Platynereis peptidergic signaling.This work was supported by Max Planck Society Sequencing Grant M.IF.A.ENTW8050 to GJ. The research leading to these results was supported by the European Research Council under European Union Seventh Framework Program FP7/2007–2013 and European Research Council Grant Agreement 260821

    Initial Quantitative Proteomic Map of 28 Mouse Tissues Using the SILAC Mouse

    No full text
    Identifying the building blocks of mammalian tissues is a precondition for understanding their function. In particular, global and quantitative analysis of the proteome of mammalian tissues would point to tissue-specific mechanisms and place the function of each protein in a whole-organism perspective. We performed proteomic analyses of 28 mouse tissues using high-resolution mass spectrometry and used a mix of mouse tissues labeled via stable isotope labeling with amino acids in cell culture as a "spike-in" internal standard for accurate protein quantification across these tissues. We identified a total of 7,349 proteins and quantified 6,974 of them. Bioinformatic data analysis showed that physiologically related tissues clustered together and that highly expressed proteins represented the characteristic tissue functions. Tissue specialization was reflected prominently in the proteomic profiles and is apparent already in their hundred most abundant proteins. The proportion of strictly tissue-specific proteins appeared to be small. However, even proteins with household functions, such as those in ribosomes and spliceosomes, can have dramatic expression differences among tissues. We describe a computational framework with which to correlate proteome profiles with physiological functions of the tissue. Our data will be useful to the broad scientific community as an initial atlas of protein expression of a mammalian species

    A Lane Detection Vision Module for Driver Assistance

    Get PDF
    A driver support system should provide assistance and security to the driver. For navigaton tasks it is neccessary to determine position of the ego vehicle relative to the road. One of the principal approaches is to detect road boundaries and lanes using a vision system in the vehicle. Within the European research project "Secure Propulsion using Advanced Redundant Control (SPARC)" different approaches of lane detection are developed to meet the needs of real traffic situations. The vision module presented here is based on several image filters that provide diverse information about the environment. A set of hypotheses about the state of the system is generated by a probabilistic particle filter. Assuming a predefined model of the road the particles are tested according to image filters to infere the best belief vehicle position. Emphasis was placed on extracting relevant information from the scene and efficient testing. In particular, a new testing module based on Canny edge filter and Hough transform increased the accuracy and robustness of estimation. Perfomance of the vision module was tested under various real-road conditions

    One- and two-photon resonant spectroscopy of hydrogen and anti-hydrogen atoms in external electric fields

    Full text link
    The resonant spectra of hydrogen and anti-hydrogen atoms in the presence of an external electric field are compared theoretically. It is shown that nonresonant corrections to the transition frequency contain terms linear in the electric field. The existence of these terms does not violate space and time parity and leads to a difference in the resonant spectroscopic measurements for hydrogen and anti-hydrogen atoms in an external electric field. The one-photon 1s-2p and the two-photon 1s-2s resonances are investigated

    Three charged particles in the continuum. Astrophysical examples

    Full text link
    We suggest a new adiabatic approach for description of three charged particles in the continuum. This approach is based on the Coulomb-Fourier transformation (CFT) of three body Hamiltonian, which allows to develop a scheme, alternative to Born-Oppenheimer one. The approach appears as an expansion of the kernels of corresponding integral transformations in terms of small mass-ratio parameter. To be specific, the results are presented for the system ppeppe in the continuum. The wave function of a such system is compared with that one which is used for estimation of the rate for triple reaction p+p+e→d+ν, p+p+e\to d+\nu, which take place as a step of pppp-cycle in the center of the Sun. The problem of microscopic screening for this particular reaction is discussed
    • …
    corecore